Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains
Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains
€80,95
/
Wat zijn de verschillende condities?
- Als nieuw: Zeer goede staat; er kunnen lichte gebruikssporen aanwezig zijn.
- Goed: In goede, nette staat met beperkte gebruikssporen. Denk aan een leesvouw of lichte rand-/hoekslijtage, een klein vlekje of verkleuring. Geen scheuren, losse pagina’s of grote beschadigingen; geen uitgebreide aantekeningen (hoogstens een naam of korte notitie).
- Gebruikt: Het boek kan een beschadiging hebben zoals een leesvouw in de rug, ezelsoren, vlekjes, verkleuring, deukjes, krasjes of slijtage. Ook kan er een boodschap of stempel voorin of achterin staan.
- Zeer gebruikt: Het boek heeft meerdere beschadigingen of bijzonderheden en/of er is (veel) geschreven op de pagina’s. Specifiek mogelijk: naam voorin, veel slijtage, kromme rug, grote vouw of kleine beschadiging.
This book considers dynamic boundary value problems in domains with singularities of two types.
This book considers dynamic boundary value problems in domains with singularities of two types. The first type consists of "edges" of various dimensions on the boundary; in particular, polygons, cones, lenses, polyhedra are domains of this type. Singularities of the second type are "singularly perturbed edges" such as smoothed corners and edges and small holes. A domain with singularities of such type depends on a small parameter, whereas the boundary of the limit domain (as the parameter tends to zero) has usual edges, i.e. singularities of the first type. In the transition from the limit domain to the perturbed one, the boundary near a conical point or an edge becomes smooth, isolated singular points become small cavities, and so on.
In an "irregular" domain with such singularities, problems of elastodynamics, electrodynamics and some other dynamic problems are discussed. The purpose is to describe the asymptotics of solutions near singularities of the boundary.
The presented results and methods have a wide range of applications in mathematical physics and engineering. The book is addressed to specialists in mathematical physics, partial differential equations, and asymptotic methods.
This book considers dynamic boundary value problems in domains with singularities of two types. The first type consists of "edges" of various dimensions on the boundary; in particular, polygons, cones, lenses, polyhedra are domains of this type. Singularities of the second type are "singularly perturbed edges" such as smoothed corners and edges and small holes. A domain with singularities of such type depends on a small parameter, whereas the boundary of the limit domain (as the parameter tends to zero) has usual edges, i.e. singularities of the first type. In the transition from the limit domain to the perturbed one, the boundary near a conical point or an edge becomes smooth, isolated singular points become small cavities, and so on.
In an "irregular" domain with such singularities, problems of elastodynamics, electrodynamics and some other dynamic problems are discussed. The purpose is to describe the asymptotics of solutions near singularities of the boundary.
The presented results and methods have a wide range of applications in mathematical physics and engineering. The book is addressed to specialists in mathematical physics, partial differential equations, and asymptotic methods.
EAN: 9783030653712