Algebraic Theory of Locally Nilpotent Derivations
Algebraic Theory of Locally Nilpotent Derivations
€111,95
/
Wat zijn de verschillende condities?
- Als nieuw: Zeer goede staat; er kunnen lichte gebruikssporen aanwezig zijn.
- Goed: In goede, nette staat met beperkte gebruikssporen. Denk aan een leesvouw of lichte rand-/hoekslijtage, een klein vlekje of verkleuring. Geen scheuren, losse pagina’s of grote beschadigingen; geen uitgebreide aantekeningen (hoogstens een naam of korte notitie).
- Gebruikt: Het boek kan een beschadiging hebben zoals een leesvouw in de rug, ezelsoren, vlekjes, verkleuring, deukjes, krasjes of slijtage. Ook kan er een boodschap of stempel voorin of achterin staan.
- Zeer gebruikt: Het boek heeft meerdere beschadigingen of bijzonderheden en/of er is (veel) geschreven op de pagina’s. Specifiek mogelijk: naam voorin, veel slijtage, kromme rug, grote vouw of kleine beschadiging.
This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations.
This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations.
The author provides a unified treatment of the subject, beginning with 16 First Principles on which the theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane and the Cancellation Theorem for Curves.
More recent results, such as Makar-Limanov's theorem for locally nilpotent derivations of polynomial rings, are also discussed. Topics of special interest include progress in classifying additive actions on three-dimensional affine space, finiteness questions (Hilbert's 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem.
A lot of new material is includedin this expanded second edition, such as canonical factorization of quotient morphisms, and a more extended treatment of linear actions. The reader will also find a wealth of examples and open problems and an updated resource for future investigations.
This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations.
The author provides a unified treatment of the subject, beginning with 16 First Principles on which the theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane and the Cancellation Theorem for Curves.
More recent results, such as Makar-Limanov's theorem for locally nilpotent derivations of polynomial rings, are also discussed. Topics of special interest include progress in classifying additive actions on three-dimensional affine space, finiteness questions (Hilbert's 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem.
A lot of new material is included in this expanded second edition, such as canonical factorization of quotient morphisms, and a more extended treatment of linear actions. The reader will also find a wealth of examples and open problems and an updated resource for future investigations.
EAN: 9783662553480